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INTRODUCTION

Rock material characteristics and behavior can be altered by pres-
sure, temperature, chemistry, and changes in microstructure, saturation,
porosity, etc. Of interest are alterations resulting from man induced
activities such as mining, o0il and gas retrieval and shock induced
stress waves. The Nevada Test Site nuclear test program has presented
an opportunity to study changes in ash-fall tuff material resulting from
the latter -- shock waves.

Planning an underground nuclear event requires information on select
geologic locations on a detailed scale not typically required in other
geologic related activities. Because of new nuclear test configurations,
a recent detailed review has been conducted on materials both before and
after the rock material had been subjected to significant stress waves
and displacements from a nuclear event. That is, the Dining Car nuclear
event media had been thoroughly characterized preshot and was subsequently
characterized postshot in preparation for another nearby nuclear event,
the Ul2e.20.

This report summarizes the examination of changes in geologic struc-
tures such as faults, joints, etc., physical properties (density, moisture
content, gas filled porosity and shear strength), geophysical properties
(seismic velocity) and geomechanical properties (in situ stress) as a func-
tion of the shock wave intensity (i.e. peak radial stress), which varied
from about 100 MPa to 1000 MPa.

The information obtained and compiled is a joint effort of several

agencies. The Defense Nuclear Agency Field Command Office was responsible
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for overall control of the site characterization program with Mr. J. W.
LaComb directing the activities. The United States Geological Survey,
Special Projects Branch (Denver), obtained the geological, geophysical
and geomechanical data while Terra Tek, Inc. (Salt Lake City) supplied
the physical properties data.

The data and discussions will be presented in individual sections
on geology, physical properties, geophysical properties and geomechanical

properties followed by overall conclusions.
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SECTION I

GEOLOGY

The Dining Car nuclear test area is located in an ash-fall tuff
approximately 400 meters below the surface and approximately 200 meters
above the Paleozoic rocks in the Rainier Mesa at the Nevada Test Site,
see Figure 1. The water table is approximately 1000 meters below the
surface. The overburden consists of a cap rock (150 meters thick) and
approximately 250 meters of ash-flow and ash-fall tuff with the ash-flow
tuff overlying the ash-fall tuff. The Dining Car area and Ul12e.20 area
(media characterized for a nuclear event after the Dining Car event)
consist of a thick-bedded to massive zeolitized calcalkaline and peral-
kaline ash-fall tuff with minor amounts of reworked calcalkaline ash-fall
tuff.

The Dining Car complex and associated drill holes are shown in Figure
2. Post-Dining Car drifts (re-entry drifts and Ul2e.20 drifts) and drill
holes are shown in Figure 3; dashed lines indicate pre-Dining Car con-
figuration. Figure 4 shows the peak radial stresses due to the Dining Car
event.

Effects of the Dining Car Event: The Dining Car re-entry drifts and
Ul2e.20 drifts provided an opportunity to observe changes in the pre-

Dining Car geology. No bedding plane shifts or fault movements were noted.
However, it must be pointed out that the Dining Car site was not structurally
complex and, therefore, no faults were encountered that were mapped pre-

Dining Car. Small, tight and discontinuous fractures are present in the

Ul2e.20 drifts and some show evidence of horizontal movement. Even though
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these features were not mapped pre-Dining Car, they are believed to be

shock induced. #

Mining observations nearest to the Dining Car site (50-60 meters),

in a peak stress range of several hundred megapascals, indicate the
material to be easily excavated with a tendency to bind together after
cutting (i.e. clogging the Alpine Miner). As the mining continued away

?f from the Dining Car site, the rock became more competent and the tendency

V'l - .

?' to slab increased.
i
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SECTION II
PHYSICAL AND MECHANICAL LABORATORY PROPERTIES

e -y e -

The Ul2e.20 event at the Nevada Test Site required, as for past

events, material characterization and hence a material model, for pre-

e pp———

N dicting stemming and containment. However, the event configuration was
!
; ] unusual in that the working point and drifts were within 90 meters of a

previous event (Dining Car). The U12e.20 material characterization was

-

therefore conducted with consideration given to this unusual condition.

Material properties were determined on core samples taken prior to
the Dining Car event from a vertical drill hole Tocated approximately 100
meters southwest of the working point and three drill holes in the hori-
! ! zontal plane of the working point. Post-Dining Car core samples (i.e. ;
Ul2e.20 samples) were from several drill holes located in the horizontal
plane of the Ul2e.20 main and auxiliary drifts.

Tests were conducted on core samples from the following drill holes:

UE12e#1 (vertical from Mesa top)

Ul2e.14 UG#10

' Pre-Dining Car
Ul2e.15 UG#2 (see Figure 2)

Ul2e.18 GZ#1
Ul2e.18 DNRE#1
Uize.20 UG#L, 2, 3 Post-Dining Car
Ul2e.20 HF#1, 2, 3, 4, 5, 6, 7, 8, 9, 10A (see Figure 4)

Material characterization was accomplished by determination of mech-
anical properties (i.e., a combination of uniaxial strain and triaxial

compression tests) and measurement of physical properties and ultrasonic

s .
magh -
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tongitudinal and shear wave velocities. Select core samples were also
subjected to scanning electron microscopy. The above material pro-
perties are summarized in individual tables in the appendix.

Effects of the Dining Car Event: Interest in the effects of nu-
clear shock loading on tuff material led to comparison of preshot and
postshot* Dining Car data. The effects were first observed in a re-
entry drill hole and in other site investigation holes from which the
uniaxial strain tests produced lower stress differences for given con-
fining pressures**, This lower stress difference becomes immediately
apparent when preshot and postshot data are plotted together as shown
in Figure 5. Uniaxial strain volume change curves also showed a marked
difference between preshot and postshot tuffs. MWhen test results are
plotted on an expanded scale, postshot tuffs have a significantiy
Targer "foot" than do preshot tuffs, as shown in Fiqure 6. Strangely
enough, however, the postshot tuffs produced Tower uniaxial strain
permanent volume compactions than did the preshot (the unloading curves
are not shown but the data is listed in Tables Al-A7).

It was reasoned that the differences might be explained by the
presence of numerous microcracks in the postshot tuffl, which reopen on
unloading. The preshot tuff's permanent volume compactions are primarily
due to air filled pore porosity. Thus, the relative small "foot" associated

with the usual permanent volume compaction of 1 to 2% by volume. The

* The "postshot" data is generally a combination of tuff which was
subjected to a peak radial stress of from 100 MPa to 1000 MPa.

** Unjaxial strain tests to 400 MPa confining pressure are conducted
to simulate the one-directional stress waves from the nuclear event
in addition to providing indicators of material shear strength (i.e.
stress-stress response) and gas-filled void content (i.e. stress-
strain response).

12
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apparent air void content of the postshot tuff, on the other hand, is
thought to be due to shock-induced microcracks which have been "opened"
when relieved of overburden stress and are closed easily at low stresses --
reference the "foot" on the postshot samples. The postshot samples either
contain very little, if any, of the original air-filled pore porosity or
the existing pores have been filled with water. This latter possibility
has been suggested by data on the preshot and postshot Ming Blade tuff2
and is also reflected in the data contained herein, see Table 1. The
bed 4J*numbers represent the average properties of that rock unit through-
out the Area 12 tunnel complex. Bed 4J shows identical porosities and
moisture contents to that of the pre-Dining Car media (also 4J) but both
have noticeably Tower porosities and moisture contents than the postshot
media.

To address these gas-filled void changes, select postshot samples

were hydrostatically loaded to estimated overburden stresses followed by

TABLE 1**

Average Select Properties of Preshot Dining Car
and Ul2e.20 Media

Density, gm/cc Moisture
Porosity Content
As-Received Dry Grain % %
Dining Car 1.93 1.59 2.44 35 18
(49) 1.96 1.63 2.47 35 18
Post Dining Car 1.90 1.51 2.52 40 20.3
(U12e.20)

* An individual sub-unit within the Tt4 unit shown in Fiqure 1.
** Compiled by Mr. J. W. LaComb, DNA, Mercury, Nevada.
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uniaxial strain loading. It was observed that the foot was virtually
eliminated and measured permanent compaction from the uniaxial strain
portion of the test was reduced substantially (Tables A6 and A7). Typical

tests are shown in Figure 7. This observation suggested that microcracks

do apparently close when overburden stresses are applied. Similar tests

i were conducted on a few preshot tuff samples to determine if the initial

-

hydrostatic compression would eliminate any permanent compaction. The

f j data, however, was not sufficient to draw any conclusions. Further tests
i comparing preshot and postshot tuff are needed to answer these questions
| of overburden stress and microcrack effect on material properties.

To investigate microcrack presence, several preshot and postshot
tuff samples were subjected to microscopic examination using a scanning

electron microscope. Preshot tuff samples were thoroughly examined and

Ul2e.20

HF a8

4.0 58
«o0p 5.5 MPo

HYDROSTAT

L]

~

L4
CONFINING PRESSURE, 0y, MPo
»

VOLUME CHANGE,AV/ Vg %

MEAN NORMAL STRESS, P, , MPo
~N
S

1 A
i g [ i 2 3

; ‘ VOLUME CHANGE, AV/ Vo, %

: Figure 7. Typical uniaxia) strain and hydrostatic compression/uniaxial
_E strain tests on Hybla Gold tuff.
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few microcracks were observed. Pore structure appeared undamaged and the

zeolite web-like structures often found in the pores were still intact.
Representative preshot photographs are shown in Figure 8. Postshot tuff
samples were examined equally thoroughly and a large number of microcracks
were present in all cases, see Figure 9. The zeolite webbing was partially
broken down in some cases and cleavage planes were occasionally present.

An examination was also made of preshot tuff subjected to a 400 MPa uniaxial
strain test. Figure 10 shows photographs of post uniaxial strain tuff.
There is some indications of damage although not as obvious as in the post-

shot material.

So far, changes in physical properties and the existence of micro- ]
cracks have been documented. Their effect on the gas-filled void content
has also been discussed and partially verified. The mechanisms behind the
changes in the shear stress response are at this time mostly speculation,
although supportive test data are available.

The Tower stress-stress response during the uniaxial strain tests,
Figure 5, could be a result of both the microcracks and the physical pro-
perties changes. Tests have been conducted in which samples were subjected
to two cycles of uniaxial strain loading to roughly simulate fractured
postshot samp]es3. Many of the samples produced a lower stress-stress
curve on the second cycle. There is evidence, therefore, that the exist-
ence of microcracks can lessen the shear stress capacity of the material.
Likewise, a material with high porosity, high moisture content (i.e.
simulating postshot material), and, hence, a Tower effective stress,

will also exhibit Tower shear stresses.

16
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i Figure 8. ESM photographs of virgin ash-fall tuff from Hybla Gold '
i Site. . P




————— 50 Micrcns p——————— 25 Microns

p————————— 50 Micrcrs ———— 25 Microns y

Figure 9. ESM photographs of ash-fall tuff subjected to shock wave

from the Dining Car nuclear explosion.
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Figure 10. ESM photographs of ash-fall tuff subjected to 400 MPa
| uniaxial strain test.
[
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The ultrasonic p- and s-wave velocities conducted at room conditions
show several regions of low velocities (not seen pre-Dining Car), see
appendix. The decreases were as much as 30 to 50 percent in select areas.
This decrease in ultrasonic velocities could also be a result of both the
microcracks and the physical properties changes. Test results generated at
Terra Tek show ultrasonic longitudinal (p-wave) velocity decreases of up to
25 percent as a result of fracturing by uniaxial compression loading and
direct shearing4. With regard to the physical properties changes (primarily
the increase in porosity and moisture content) Figure 11 shows p-wave plotted
versus moisture content for random tunnel bed tuff samples. Although there

is considerable scatter, the data does suggest lower p-wave velocities with

higher water contents.
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Figure 11. Ultrasonic p-wave velocity versus moisture content
for random Area 12 tunnel bed tuffs.




SECTION III
GEOPHYSICAL PROPERTIES

' Seismic velocities were measured for the Dining Car event and they
! varied from 2400 to 2500 meters per second, which is typical of the

bed 4 tuff.

t
!
J { Effects of the Dining Car Event: The seismic velocities measured

after the Dining Car event (Figure 12) indicate changes due to the shock

i
¢ ] Toading. MWithin the "chimney" region (i.e. disjointed) the velocities are,
J

as expected, only about 1500 meters/second (M/S) (the "chimney" region is

bl

shown in Figure 3 by the dashed circie around the Dining Car working point).

From the "chimney" region out to a radial distance of about 65 meters
! (i.e. a peak radial stress of about 300 MPa) the velocities ranged
from about 2100 M/S to 2200 M/S. The reduction in this region is
probably due to the small, tight, discontinuous fractures and faults
| present as well as possible microfracturing*. As mentioned in the
laboratory test program (Section II), the ultrasonic velocities on
: core samples from this same region substantiated the decrease in velocity.

At a range of 80 to 90 meters (a radial stress of 100 to 200 MPa),

ISt e At St A & Al T i Al L e

the longitudinal seismic velocities were comparable to the pre-Dining
Car values. In this same region, however, shear seismic velocities

were still noticeably Tower than preshot values. A possible explana-

tion is that the microcracks which exist postshot have a more pro-
nounced affect on the shear wave velocity than on the longitudinal wave

velocity.

* See Section II.
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Figure 12. Plan view of the Ul2e.20 complex showing
longitudinal and shear wave velocities.




SECTION IV

GEOMECHANICAL PROPERTIES

Since the in situ stress is an important parameter in determining
the potential for a particular site to contain a nuclear event, con-
siderable effort was spent in obtaining the stresses, via the overcore
technique and hydraulic fracturing. The Dining Car region indicated,
via hydraulic fracturing, a minimum in situ stress of about 3.8 MPa
and via the overcore technique, approximately 2.8 MPa.

Results of the overcore data are preliminary since the technique
requires use of a Young's modulus and there are uncertainties in inte-
grating the laboratory measured moduli with the overcore data.

Minimum <n situ stress via overcoring in another "e" tunnel loca-
tion (several hundred meters south of the Ul2e.20 site) was about 3.4
MPa. An average or typical value for minimum <n situ stress in the
subject area would be between 3.0 and 3.5 MPa.

Effects of the Dining Car Event: In anticipation of the Ul2e.20
event (i.e. post-Dining Car), over forty hydraulic fracture tests and
several overcore experiments were performed. Figure 13 shows the apparent
minimum <n situ stresses as a function of distance from the Dining Car
event and peak radial stress. Near the Dining Car chimney, stresses had
decreased to about 1.2 MPa. There appears to be "higher than normal"
stresses near the Ul2e.20 location but further data are necessary to

address this phenomena. The results indicate that the Dining Car stress

wave did not have an apparent affect on the in situ stress field (at least
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minimum) at a peak stress less than about 100 MPa (i.e. a range of about
85 meters). However, affects are apparent as the peak stress increases

to 1000-2000 MPa.
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Figure 13. Minimum in situ stresses as a function of distance 3
from the Dining Car event and peak radial stresses. 1
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CONCLUSIONS

The Dining Car event provided an opportunity to study the changes
in rock material (tuff) subjected to shock waves. In this case, the
range of peak radial stress was from 1000 to 100 MPa.

Geology: There was no evidence of bedding plane shifts or fault
movement. There were, however, few faults mapped pre-Dining Car. The
post-Dining Car media does contain small, tight and discontinuous frac-
tures and faults, some of which showed evidence of horizontal movement.
These features are believed to be shock induced.

The ease of excavation in the tuff which had been subjected to a
stress of several hundred megapascals (i.e. 500-700 MPa), as compared
to preshot mining, suggests changes such as a decrease in the shear
strength of the material.

Material Properties: Of significance were:

1) changes in the characteristics of volume strain and permanent
volume compaction during uniaxial strain tests,
2) an apparent decrease in the shear stress capacity during uni-
axial strain loading, and
3) a decrease in the ultrasonic p- and s-wave velocities.
Further examination produced evidence that densities, porosities, and
moisture contents had increased, suggesting fluid migration into exist-
ing or induced cracks and pores. Also, subsequent electron scanning
microscope pictures showed numerous microcracks in the postshot material.
The mechanical properties changes (numbers 1 through 3 above)

appear to be explainable via the changes in the physical characteristics.
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In most cases, data are presented to verify the proposed relationships
between the changes.

Geophysics: The seismic velocities decreased from the pre-Dining
Car values (2500-2600 M/S) to about 1500 M/S through the Dining Car
"chimney". The tuff which had been subjected to several hundred mega-
pascals peak stress (~400 to 800 MPa) showed a decrease of 10 to 20
percent -- from 2500 M/S to -2100 M/S. OQutside of a stress of about
200 MPa, there was little apparent change in the longitudinal seismic
velocities. The shear wave velocities, however, were affected more
noticeably even beyond the 100 MPa stress level.

Geomechanics: There were no apparent changes in the in situ
stress field outside of about 100 MPa peak radial stress. As the peak
stresses increased to 1000 MPa, however, the apparent minimum in situ
stress decreased to about 1.2 MPa, as compared to a pre-Dining Car
stress of 3-3.5 MPa. These measurements were obtained via a combina-

tion of hydraulic fracturing and overcoring.

In summary, the in situ stress state and material properties were
affected noticeably when subjected to peak radial stresses greater
than 100 MPa. There are likely some changes at lower stresses but

their magnitudes were not quantified for this application.
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APPENDIX
PRE-DINING CAR DATA

UE1lZ2e#1

Ul2e.14 UG#10
Ul2e.15 UG#2
Ul2e.18 GZ#1

Physical Properties, Uniaxial Strain Measured Permanent Compaction, and
Ultrasonic Longitudinal and Shear Wave Velocities of

|
!
_ ? TABLE Al
’ UE12e#1 Tuffs

. DRILL HOLE DENSITY (gm/cc) WATER | POROSITY [SATURATION| caLcC. MEAS. VELOCITY
FOOTAGE | o BY WET | (o) ) AR [PERMANENT|  (km/gec)
(M) veo | bRy WEIGHT vOIDS COMP. ,
‘ GRAIN (%) %) %) LONG SHEAR |
!
UE12e.#1 Meas Cal Meas. Meas. Cal. Cal. Cal Meas. Meas. Meas ?
!
345.6 1.80 1.38 2.42 23 43 97 0.9 1.8 2.50 1.23
- 349.3 1.85 1.54 2.42 17 36 86 5.5 2.0 2.99 1.69 ]
- 353.0 1.84 1.47 2.42 20 39 94 2.3 3.1 2.46 1.28 b
X 357.2 1.79 1.41 2.42 21 42 90 3.7 1.0 2.44 1.25
360.3 1.88 1.53 2.47 18 38 90 2.9 3.0 2.66 1.37
- 364.2 2.06 1.83 2.44 11 25 91 1.9 1.1 3.08 1.47
! 368.5 1.94 1.59 2.45 18 35 99 0.1 0.7 3.15 1.62
2 371.9 1.94 1.61 2.45 17 34 96 1.3 1.3 2.93 1.50
‘ 376.1 1.88 1.51 2.47 20 39 96 1.9 1.5 2.57 1.24
' 379.8 1.88 1.55 2.37 18 34 97 1.6 2.1 2.89 1.58
383.7 1.80 1.46 2.44 19 40 85 6.2 3.2 2.62 1.05
387.4 1.93 1.56 2.58 19 39 93 2.5 1.7 2.47 1.09
391.4 1.94 1.59 2.53 18 37 44 2.1 1.7 3.01 1.40
; 395.0 1.99 1.65 2.58 17 36 94 2.0 2.7 2.50 1.11
-l 398.7 1.82 1.44 2.42 21 40 94 2.5 2.2 2.67 1.51 k
|
f | 402.3 1.81 1.41 2.43 22 42 95 2.0 3.4 2.54 1.18
! 406.3 1.85 1.46 2.44 21 40 97 1.2 1.4 2.75 1.43
410.0 1.80 1.42 2.43 21 4] 9] 3.6 2.3 2.41 1.18
413.9 1.81 1.45 2.47 20 a1 87 5.3 3.1 2.17 1.03
417.9 1.85 1.46 2.49 21 42 94 2.4 2.4 2.18 1.10
421.8 1.81 1.42 2.45 22 42 94 1.6 1.0 2.48 1.06
i .
! .
‘."v:’

29




TABLE A2

Physical Properties, Uniaxial Strain Measured Permanent Compaction, and
Ultrasonic Longitudinal and Shear Wave Velocities of
Ul2e.14 UG#10 Tuffs

" DRILL HOLE DENSITY (gm/cc) WATER POROSITY Lmnmon CALC. MEAS. VELOCITY
! FOOT) BY WET AR {km/pec)
NGE AS- WEIGHT %) o VOIS COMP.
(M)  |RECEIVED| DRY | GRAIN %) %) 0 LONG | SHEAR
\ Ul2e.14
: UG#10 Meas Cal. Meas Meas Cal Cal. Cal. Meas. Meas. Meas.
{ 198.1 1.89 1.47 2.43 22 39 ~100 -0 0.4 2.95 1.47
212.8 1.87 1.51 2.44 19 38 94 2.1 1.3 2.67 1.32
227.7 2.07 1.71 2.55 17 33 ~100 -0 0.6 2.76 1.41
. 243.2 1.97 1.59 2.51 19 36 ~100 -0 1.4 2.52 1.07
258.5 1.83 1.40 2.42 23 42 ~100 -0 1.0 2.44 1.12
274.6 1.94 1.61 2.49 17 35 93 2.3 0.9 3.01 1.31
289.9 1.93 1.56 2.45 19 36 ~100 -0 1.4 2.7 1.36
E 306.6 2.00 1.64 2.42 18 32 ~100 -0 1.3 2.84 1.40
g f 320.3 1.92 1.57 2.32 18 32 ~100 -0 0.8 2.96 1.61
k. ' 325.2 2.4
L 327.4 1.83 1.41 2.38 23 41 ~100 -0 4.4 2.45 1.06
329.2 2.2
! 335.0 1.90 1.54 2.42 19 36 99 0.3 1.1 2.63 1.15
: 342.9 2.05 1.81 2.40 12 25 99 0.7 0.9 3.67 2.14
350.5 1.93 1.58 2.42 18 35 ~-100 -0 1.1 2.86 1.70
) 358.8 1.84 1.49 2.46 19 39 89 4.4 1.5 2.57 1.15
; 365.2 1.81 1.37 2.42 24 a3 ~100 ~0 2.5 2.34 1.01
| 372.8 1.90 1.50 2.45 21 39 ~100 -0 1.0 2.55 1.20
! 381.0 1.85 1.44 2.49 22 a2 97 1.2 1.2 2.33 0.84
! 388.3 1.88 1.52 2.52 19 40 30 3.7 0.8 2.55 1.19
395.9 1.85 1.44 2.47 22 42 98 0.7 1.3 2.34 1.01
403.3 1.86 1.46 2.48 21 41 96 1.0 1.9 2.43 1.12
405.7 1.77 1.35 2.43 24 45 96 2.0 1.2 2.39 0.99
412.7 1.98 1.65 2.50 17 34 99 0.4 0.8 2.75 1.36
420.3 1.91 1.57 2.42 18 35 97 1.0 1.1 2.65 1.13
427.9 2.01 1.68 2.49 16 32 99 0.3 0.6 2.76 1.31
435.0 2.00 1.68 2.58 16 34 95 1.7 1.3 3.06 1.36
443.2 2.02 1.70 2.51 16 32 99 0.3 1.2 2.95 1.36
446.5 2.01 1.65 2.51 18 34 -100 -0 1.5
450.8 1.91 1.60 2.46 16 35 87 4.4 2.9 2.74 1.36
455.1 2.05 1.72 2.54 16 32 ~100 -0 1.1
458.4 2.00 1.68 2.50 16 33 98 0.8 0.9 2.68 1.18
465.7 1.94 1.59 2.49 18 36 97 1.0 1.1 2.69 1.25
4 474.3 1.77 1.33 2.45 25 46 97 1.4 1.8 2.33 1.03
j 482.0 1.83 1.44 2.41 21 40 97 1.3 2.7 2.73 1.26
! 489.2 1.81 1.39 2.48 23 44 95 2.2 1.9 2.54 1.12
496.5 1.89 1.53 2.39 19 36 100 0.1 1.0
501.4 1.96 1.64 2.43 16 33 99 0.4 0.9
508.1 1.87 1.54 2.38 18 35 95 1.7 0.7 2.82 1.37
517.6 1.89 1.53 2.45 19 37 96 1.4 1.3 2.52 1.17




TABLE A3

Ul2e.15 UG#2 Tuffs

Physical Properties, Uniaxial Strain Measured Permanent Compaction, and
Ultrasonic Longitudinal and Shear Wave Velocities of

i ORILL HOLE DENSITY (gri/cc) WATER | POROSITY lsmmrm CALC. MEAS. VELOCITY
FOOTAGE BY WET o) o) AR (km/sec)
- (M) AS- oRY WEIGHT vOIDS COMP, r‘
4 GRAIN ™) ) %) LONG SHEAR
- U12e.15
: UG#2 Meas. Cal Meas. Meas . Cal Cal. Cal. Meas. Meas. Meas.
631.9 1.93 1.53 21 1.6
| 647.4 2.01 1.67 17 1.2
| 663.6 1.91 1.55 19 1.0
| 677.9 2.02 1.73 14 0.6
{ 693.1 1.80 1.37 24 1.8
708.1 1.90 1.53 19 2.0
; 723.6 1.91 1.52 20 0.9
T 737.3 1.96 1.63 2.48 17 34 97 1.3 1.9
' 751.3 2.01 1.69 2.50 16 32 99 0.4 1.5
755.3 1.99 1.69 2.43 15 30 98 0.5 2.2

TABLE A4

Ultrasonic Longitudinal and Shear Wave Velocities of

Ul2e.18 GZ#1 Tuffs

- Physical Properties, Uniaxial Strain Measured Permanent Compaction, and

DRILL HOLE DENSITY (gm/cc) WATER POROSITY ISAWM CALC. MEAS. VELOCITY
FOOTAGE - BY WET %) o) AR PERMANENT| (km/spec)
™ fevep | oRy WEIGHT voios | come.
i GRAIN (%) %) %) LONG | SHEAR
Ul2e.18
GZ#1 Meas cal. Meas Meas Cal Cal Cal. Meas Meas. Meas.
2.7 2.02 1.72 2.50 15 31 97 1.1 0.7 3.30 1.80
, 7.3 1.8% 1.44 2.47 22 42 99 0.5 1.7 2.64 1.23
i 8.8 1.85 1.44 2.44 22 4] 99 0.4 3.9 2.63 1.25
> 10.7 1.84 1.43 2.48 23 42 98 1.0 3.0
14.6 2.00 1.72 2.44 14 30 94 1.8 0.6 3.36 1.87
¥
4 18.6 1.84 1.46 2.49 21 41 92 3.3 1.2 2.64 1.30
. { 21.3 1.84 1.45 2.45 22 4] 97 1.4 2.3 2.57 1.30
d 21.9 1.81 1.37 2.47 25 45 99 0.3 2.1 2.49 1.08
24.7 1.87 1.52 2.46 19 38 92 3.2 2.1 3.46 1.75
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POST-DINING CAR DATA

Ul2e.18 DNRE#1

Ul2e.20 UG#1, 2, 3
Ul2e.20 HF#1-10A

TABLE A5

Physical Properties, Uniaxial Strain Measured Permanent Compaction, and

Ultrasonic Longitudinal and Shear Wave Velocities of

Ul2e.18 DNRE#1 Tuff

32

- DRILL HOLE DENSITY (grvee) water_ | porosiTy fsarvrarion| cacc. | weas. VELOCITY
i FOOTAGE | o ey | % ) VQ&WW (km/sec)
: M)  |REIVED| DRY | GRAIN % % % | LONG | sHEAR
Ul2e.18
_ONREM | meas. | cCal. | meas. | meas. | car. | car. | cat. | Meas. | Meas. | meas.
i 122 1o | 168 | 252 | 167 | 3409 9.3 2.0 1.0 272 | 1.29
210 | 1.80 | 1.90 | 249 | 225 | a0 92.1 3.5 2.4 2.8 | 1.13
207 | 187 | 149 | 2.8 | 2001 | 3809 9.7 1.3 0.8 238 | 1.9
| 308 [1.89 | 153 | 250 | 192 | 302 9.7 2.9 1.1 2.67 | 1.4
; 72 |1.89 | 152 | 250 | 19.6 | 30.3 9.2 2.3 1.0 21 | 1.63
sa.5 | 179 | 140 | 240 | 2200 | 435 9.6 4.1 2.7 1.70 -
st.5 | 177 | 133 | 247 | 286 | 460 9.7 2.4 1.2 - -
1

N AU frm oy g 1 = 8 e gt A
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TABLE A6

Physical Properties, Uniaxial Strain Measured Permanent Compaction, and
Ultrasonic Longitudinal and Shear Wave Velocities of
Ul2e.20 UG#1,2,&3 Tuffs

DRILL HOLE DENSITY (gm/cc) ;v:r\s:l_ POROSITY Ismm'nou CALC. MEAS*" VELOCITY
AR PERMANENT | (km/pac.
FOOTAGE | ps- weet | & voios | cowp. !
(M) JRECEIVED | DRY GRAIN %) %) %) LONG SHEAR
Ul2e.20
__UG#l Meas . Cat. Meas . Meas. Cal. Cal. Cal. Meas . Meas. Meas .
| 10.7 1.89 1.56 2.53 18.1 38.5 89.3 4.1 0.9 2.24 0.95
20.7 2.08 1.82 2.47 12.3 26.0 98.3 0.4 0.5 3.37 1.82
27.7 m.s.*| 1.98 1.65 2.54 16.8 35.0 94.9 1.8 --- - -
i 29.9 1.77 1.29 2.63 27.1 50.9 94.3 2.9 1.7 2.42 1.20
35.1 1.78 1.32 2.66 26.1 50.5 91.8 4.1 1.9 2.44 1.40
12.4 1.74 1.31 2.53 24.6 48.0 88.9 5.3 1.9 1.91 0.93
48.8 m.s.*] 1.80 1.38 2.49 23.3 44.5 94.2 2.6 - -- --
57.0 m.s.*} 1.74 1.30 2.51 25.4 48.3 91.5 4.1 --- -- --
! 61.3 1.83 1.42 2.54 22.6 44.2 93.7 2.8 0.1 1.91 0.73
' 69.5 1.94 1.60 2.48 17.7 35.6 96.4 1.3 1.1 2.28 1.24
l UlZe.20
| uG#2
6.4 1.95 1.62 2.48 17.0 34.7 95.5 1.6 - 3.18 1.87
14.0 1.89 1.56 2.46 17.4 36.5 90.0 3.7 1.0 2.44 1.18
H 21.0 1.9% 1.59 2.49 18.3 36.0 99.1 0.3 0.4 2.87 1.39
' 29.9 1.98 1.66 2.51 16.2 33.9 94.8 1.8 0.4 2.98 1.40
. 37.5% 1.82 1.38 2.50 24.0 44.6 97.7 1.1 0.6 2.35 0.99
“ 45.7 1.88 1.48 2.50 21.1 40.6 97.4 1.0 1.1 2.25 1.15
1 §3.0 1.89 1.48 2.53 21.8 41.6 99.0 0.4 0.3 2.47 1.37
, 61.0 1.92 1.53 2.52 20.1 39.2 98.8 0.5 0.6 2.08 1.13
68.6 1.91 1.50 2.55 21.6 4.3 100.0 0 0.4 2.21 1.20
s 75.9 1.88 1.49 2.50 20.9 40.5 96.9 1.3 0.7 2.19 1.10
! ' 82.9 1.99 1.65 2.60 16.9 36.4 92.3 2.8 0.7 2.43 1.12
; 91.4 1.92 1.55 2.53 19.4 38.8 95.8 1.6 1.2 2.29 1.15
! 106.7 1.88 1.49 2.49 20.6 40.1 96.8 1.3 1.6 2.43 1.40
114.0 1.95 1.57 2.55 19.4 38.4 98.7 0.5 0.3 2.30 1.12
| 121.3 1.88 1.48 2.47 21.0 39.9 99.0 0.4 0.2 2.51 1.30
P Utze.20
| UGH3 HYD/1-D ]
|
3 0.6 1.92 1.55 2.56 19.1 39.3 93.2 2.6 0.8 2.62 1.36
! 1.5 1.93 1.55 2.57 19.6 39.6 95.4 1.8 0.8/0.2 2.39 1.27
I 3.4 1.89 1.50 2.54 20.4 40.8 94.6 2.2 0.1 2.22 1.49
5.5 1.86 1.45 2.56 22.0 43.3 94.4 2.4 0.6/0.1 2.32 1.30
lo ; 7.3 1.88 1.49 2.55 20.8 41.6 94.0 2.5 0.7 2.30 1.52
| 9.1 1.89 1.49 2.53 21.2 4.1 97.4 1.1 0.4/0.8 2.04 1.16
10.7 1.93 1.56 2.54 19.1 38.6 95.7 1.7 0.5 2.30 1.48 £
11.9 1.93 1.55 2.55 19.6 39.1 96.6 1.3 0.3/0.3 2.26 1.35
13.1 1.91 1.52 2.51 20.5 39.5 99.1 0.3 0.2 2.59 1.37
14.9 1.93 1.57 2.56 18.8 38.8 93.6 2.5 1.3/0.2 2.22 1.34
16.5 1.30 1.52 2.52 20.2 39.9 96.3 1.4 0.1 2.82 1.21
18.3 1.98 1.62 2.57 18.3 37.1 97.8 0.8 0.5/0.2 2.53 1.51 4
19.% 1.9% 1.58 2.49 18.8 36.4 100.0 0 1.8 3.07 1.49
21.0 1.93 1.56 2.54 19.4 38.8 96.6 1.3 0.7/<0.1 2.33 1.48
22.6 1.95 1.59 2.49 18.6 36.2 100.9 0 0.5 2.51 1.46
24.1 1.93 1.56 2.53 19.3 384 96.9 1.2 0.8/7-0.1 2.65 1.54
25.6 1.88 1.48 2.51 21.2 41.0 97.3 1.1 0.3 2.86 1.29
27.1 1.85 1.45 2.52 21.4 42.3 93.6 2.7 1.3/-0.1 2.53 1.38
29.0 1.89 1.51 2.46 0.2 38.7 °8.7 0.5 0.5 2.53 1.41
30.2 1.89 1.52 2.56 19.8 40.8 91.7 3.4 0.9/-0.1 2.31 1.27
32.3 1.91 1.55 2.48 19.1 37.7 96.8 1.2 0.6 2.51 1.28
33.2 1.73 1.27 2.42 26.% 47.7 97.3 1.3 0.7/-0.1 2.19 1.27
34.8 1.74 1.30 2.42 25.5 46.3 95.8 2.3 0.6 2.67 1.36
36.0 1.9% 1.59 2.48 18.5 35.9 100.0 0 0.7 2.91 1.46
36.9 1.94 1.59 2.57 17.2 38.1 90.6 3.1 0.4/-0.1 2.39 1.43

* Moisture sample (i.e. the amount or condition of material limited
the test program to measurement of only "physical properties").

** The double figures in the "measured permanent compaction" column re-
flect the volume compactions resulting from hydrostatic compression

followed by uniaxial strain loading. See Section II for further details.
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' TABLE A7

Physical Propertigs, Uniaxial Strain Measured Permanent Compaction, and
Ultrasonic Longitudinal and Shear Wave Velocities of
Ul2e.20 HF#1-10A Tuffs

DRILL. HOLE DENSITY (gnv/cc) WATER | POROSITY JsaTuramion| carc. MEAS. VELOCITY
FOOTAGE ] BY WET P o AR [rereuanen| "‘""F‘"
| (M) gveo| orv | ora WEIGHT voos | cowe.
IN o) s =~ LONG | SHEAR
1 Ul2e.20
! HF 41 Meas. Cal. Meas. Heas . Cal. Cal. Cal. Meas . Meas . Meas .
1.8 1.89 1.50 | 2.2 20.7 40.5 96.5 1.4 0.9/-0.1 ) 2.14 1.26
' 4.9 1.88 1.49 2.50 20.5 40.2 95.8 1.7 n.s. .S, M.S.
Ul2e.20
{ HF#2
3.0 1.80 1.39 247 3.0 43.7 94.7 2. 0.8/<0.1 | 1.93 1.07
Ul2e.20
. HF#3
1.5 1.79 1.35 2.49 2.6 45.8 96.1 1.8 0.3/0.4 1.80 1.20
Ul2e.20
HF#4
. 0.3 1.94 1.57 2.55 19.1 38.4 96.4 1.4 0.8/0.4 2.16 1.26
2.7 1.9 1.60 | 2.55 18.4 37.3 96.7 1.4 0.9/<0.1 { 1.98 1.12
; 6.4 1.87 1.45 2.49 22.4 a1.7 100.0 0 0.5 2.13 1.12
: 7.6 1.89 1.49 | 2.52 20.9 40.7 97.1 1.2 0.7 1.76 0.82
! Ul2e.20
HF#5
0.3 1.94 1.59 2.54 17.9 37.3 93.2 2.6 0.6 2.50 1.33
1.5 1.93 1.57 2.49 18.5 36.8 96.8 1.2 0.77.0.1 | 2.48 1.33
! 2.7 1.90 1.52 2.50 19.8 39.0 96.3 1.4 0.5 2.42 1.35
‘ 4.6 1.90 1.52 2.50 20.1 39.3 97.3 1.1 0.8/<0.1 | 2.57 1.36
| 6.7 1.92 1.54 2.51 19.6 38.5 97.8 0.8 1.2 2.72 1.45
' 8.5 1.92 1.56 2.51 18.6 37.7 94.7 2.0 0.270.6 | 2.73 1.36
9.8 1.79 1.39 | 2.44 22.4 43.1 93.1 3.0 1.1 2.62 1.50
l 11.3 1.78 1.31 2.46 24.9 46.8 92.6 3.5 1.0/<0.1 | 2.18 1.23
12.5 1.97 1.63 2.48 17.3 34.4 99.4 0.2 0.5 2.83 1.59
! 13.4 1.92 1.54 2.46 19.6 37.3 100.0 0 0.6/<0.1 | 2.57 1.38
" 14.9 2.03 1.7t 2.55 15.9 33.1 97.7 0.8 0.4 2.60 1.17
16.8 1.99 1.67 2.46 16.2 32.2 100.0 0 0.37-0.1 | 2.56 1.19
| 18.0 2.06 1.75 2.57 15.2 32.0 97.8 0.7 0.4 2.66 1.19
! 20.1 2.03 1.71 2.60 16.0 34.4 94.4 1.9 0.7/0.1 2.31 1.04
| 21.0 1.99 1.66 | 2.54 16.5 34.6 9.9 1.7 0.7 2.23 1.05
: U12e.20
' HF#6
1.8 1.82 1.40 | 2.49 22.9 43.7 95.5 2.0 0.8/0 2.06 1.10
4.9 1.87 1.51 2.46 19.4 38.7 93.7 2.8 0.4 2.12 1.81
Ul2e.20
HF47
[ 1.2 1.94 1.59 | 2.53 18.3 38.0 93.8 1.4 0.4/0 2.52 1.50
o 3.4 1.87 1.8 | 2.49 20.9 40.6 96.1 1.6 0.7 2.98 1.81
: ' 5.2 1.91 1.55 2.52 19.0 38.6 93.9 2.4 0.5/0 2.03 1.34
A ulze.20
" HE#B
1.5 1.96 1.62 | 2.42 17.2 32.9 100.0 0 1.0 2.69 1.70
4.0 1.95 1.9 | 2.57 18.5 38.2 94.7 2.0 0.7/0.2 | 2.24 1.78
5.8 1.9 1.60 | 2.54 18.2 36.9 96.9 1.2 0.7 2.59 1.14
U12e.20
_HF29
1 1.2 1.85 1.44 2.52 22.3 43.0 9.0 1.8 0.7/0.5 2.35 1.47
§ 3.4 1.85 1.44 2.50 22.4 42.6 97.3 11 0.9 2.42 1.35
3 5.5 1.87 1.46 2.55 21.6 42.5 95.1 2.1 1.1/0.1 2.61 1.25
! U12e.20
g - HE£108
1.8 2.00 1.67 2.46 16.3 32.0 100.0 n 0.5 5.06 1.75
4.0 1.94 1.56 2.52 19.4 37.9 99.9 0.4 0.9/0.4 2.31 1.40
K. 6.1 1.89 1.53 2.45 12.9 37.4 a5.4 1.7 1.5 2.73 1.58
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